Photoelectron spectroscopic study of iron-pyrene cluster anions.
نویسندگان
چکیده
Iron-pyrene cluster anions, [Fe(m)(pyrene)(n)](-) (m = 1-2, n = 1-2) were studied in the gas phase by photoelectron spectroscopy, resulting in the determination of their electron affinity and vertical detachment energy values. Density functional theory calculations were also conducted, providing the structures and spin multiplicities of the neutral clusters and their anions as well as their respective electron affinity and vertical detachment energy values. The calculated magnetic moments of neutral Fe(1)(pyrene)(1) and Fe(2)(pyrene)(1) clusters suggest that a single pyrene molecule could be a suitable template on which to deposit small iron clusters, and that these in turn might form the basis of an iron cluster-based magnetic material. A comparison of the structures and corresponding photoelectron spectra for the iron-benzene, iron-pyrene, and iron-coronene cluster systems revealed that pyrene behaves more similarly to coronene than to benzene.
منابع مشابه
Computational and photoelectron spectroscopic study of the dipole-bound anions, indole(H2O)1,2 (.).
We report our joint computational and anion photoelectron spectroscopic study of indole-water cluster anions, indole(H2O)1,2 (-). The photoelectron spectra of both cluster anions show the characteristics of dipole-bound anions, and this is confirmed by our theoretical computations. The experimentally determined vertical electron detachment (VDE) energies for indole(H2O)1 (-) and indole(H2O)2 (-...
متن کاملMass Selected ZEKE-Spectra of FeC2-Anions: A Spectroscopic Access to Intermediates in Catalytic Reactions of Hydrocarbons on Metal Surfaces
Zero-kinetic-energy (ZEKE) photoelectron spectra of metalcarbide anions are presented, allowing a high resolu tion spectroscopic access to intermediates in catalytic reac tions of hydrocarbons on metal surfaces. As a first compound, FeC2 (an intermediate of the iron/acetylene system) has been chosen. Important for successful ZEKE spectroscopy was a special anion source and the selection by ti...
متن کاملPhotoelectron spectroscopic study of carbon aluminum hydride cluster anions.
Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. Thes...
متن کاملPhotoelectron spectroscopic and computational study of the PtMgH3,5(-) cluster anions.
The two cluster anions, PtMgH3(-) and PtMgH5(-), were studied by photoelectron spectroscopy and theoretical calculations. Experimentally-determined electron affinity (EA) and vertical detachment energy (VDE) values were compared with those predicted by our computations; excellent agreement was found. The calculated structures of PtMgH3(-) and PtMgH3 both exhibit η2-bonded H2 moieties. Activatio...
متن کاملPhotoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m- (m = 2-8) Cluster Anions: Coexisting Multiple Spin States.
Iron sulfur cluster anions (FeS)m- (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS)m- (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 20 شماره
صفحات -
تاریخ انتشار 2011